Home
Class 14
MATHS
Simplify : (2(3)/(4))/(1(5)/(6)) +7/8 xx...

Simplify : `(2(3)/(4))/(1(5)/(6)) +7/8 xx(1/3 + 1/4) + 5/7 + 3/4 ` of `3/7`

A

`(56)/(77)`

B

`113/28`

C

`2/3`

D

`3(2)/(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression `(2(3)/(4))/(1(5)/(6)) + 7/8 * (1/3 + 1/4) + 5/7 + 3/4 * (3/7)`, we will follow the order of operations (BODMAS/BIDMAS). Let's break it down step by step. ### Step 1: Simplify the first term `(2(3)/(4))/(1(5)/(6))` 1. Convert the mixed numbers to improper fractions: - \(2 \frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{8 + 3}{4} = \frac{11}{4}\) - \(1 \frac{5}{6} = \frac{1 \times 6 + 5}{6} = \frac{6 + 5}{6} = \frac{11}{6}\) 2. Now, we can rewrite the first term: \[ \frac{\frac{11}{4}}{\frac{11}{6}} = \frac{11}{4} \times \frac{6}{11} = \frac{6}{4} = \frac{3}{2} \] ### Step 2: Simplify the second term `7/8 * (1/3 + 1/4)` 1. Find the sum \(1/3 + 1/4\): - The LCM of 3 and 4 is 12. - Convert each fraction: \[ 1/3 = \frac{4}{12}, \quad 1/4 = \frac{3}{12} \] - Now add them: \[ \frac{4}{12} + \frac{3}{12} = \frac{7}{12} \] 2. Multiply by \(7/8\): \[ \frac{7}{8} \times \frac{7}{12} = \frac{49}{96} \] ### Step 3: Simplify the third term `5/7` This term is already in its simplest form: \[ \frac{5}{7} \] ### Step 4: Simplify the fourth term `3/4 * (3/7)` 1. Multiply: \[ \frac{3}{4} \times \frac{3}{7} = \frac{9}{28} \] ### Step 5: Combine all the terms Now we have: \[ \frac{3}{2} + \frac{49}{96} + \frac{5}{7} + \frac{9}{28} \] ### Step 6: Find a common denominator The least common multiple (LCM) of the denominators \(2, 96, 7, 28\) is \(672\). 1. Convert each term: - For \(\frac{3}{2}\): \[ \frac{3}{2} = \frac{3 \times 336}{2 \times 336} = \frac{1008}{672} \] - For \(\frac{49}{96}\): \[ \frac{49}{96} = \frac{49 \times 7}{96 \times 7} = \frac{343}{672} \] - For \(\frac{5}{7}\): \[ \frac{5}{7} = \frac{5 \times 96}{7 \times 96} = \frac{480}{672} \] - For \(\frac{9}{28}\): \[ \frac{9}{28} = \frac{9 \times 24}{28 \times 24} = \frac{216}{672} \] ### Step 7: Add the numerators Now we can add all the numerators: \[ 1008 + 343 + 480 + 216 = 2047 \] ### Step 8: Write the final result Thus, the combined fraction is: \[ \frac{2047}{672} \] Since \(2047\) is greater than \(672\), we can convert it to a mixed number: \[ 3 \frac{31}{672} \] ### Final Answer: \[ 3 \frac{31}{672} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify: (-4(5)/(6))+(-7(3)/(4))

Simplify: 4((5)/(6))-2((3)/(8))+3((7)/(12))

Simplify [(7/(-8))+((-5)/6)]xx3/4=

Simplify: 7/8-1/3-1/4

Simplify: ((4)/(7)+(-8)/(9) +(-5)/(21) +(1)/(3)) .

Simplify 7+5 1/8-3 1/4

Simplify: (6)/(5) xx (3)/(7) - (1)/( 5) xx (3)/(7)