Home
Class 14
MATHS
sqrt((0.00001225)/(0.00005392)) is equal...

`sqrt((0.00001225)/(0.00005392))` is equal to :

A

`(25)/(77)`

B

`(35)/(73)`

C

`(35)/(77)`

D

`(25)/(73)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{0.00001225}{0.00005392}} \), we can follow these steps: ### Step 1: Simplify the Fraction First, we will simplify the fraction inside the square root. We can eliminate the decimals by multiplying both the numerator and the denominator by \( 10^8 \) (to move the decimal point 8 places to the right): \[ \frac{0.00001225 \times 10^8}{0.00005392 \times 10^8} = \frac{1.225}{5.392} \] ### Step 2: Calculate the Square Root Now we need to find the square root of the simplified fraction: \[ \sqrt{\frac{1.225}{5.392}} \] This can be rewritten as: \[ \frac{\sqrt{1.225}}{\sqrt{5.392}} \] ### Step 3: Calculate the Square Roots Next, we will calculate the square roots of the numerator and the denominator separately. 1. **Calculate \( \sqrt{1.225} \)**: - \( \sqrt{1.225} \approx 1.107 \) (using a calculator or estimation). 2. **Calculate \( \sqrt{5.392} \)**: - \( \sqrt{5.392} \approx 2.32 \) (using a calculator or estimation). ### Step 4: Divide the Results Now we can divide the results from the square roots: \[ \frac{1.107}{2.32} \approx 0.476 \] ### Step 5: Final Result Thus, the value of \( \sqrt{\frac{0.00001225}{0.00005392}} \) is approximately \( 0.476 \). ### Summary The final answer is: \[ \sqrt{\frac{0.00001225}{0.00005392}} \approx 0.476 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sqrt(0.00001225/(0.00005329))-root3(sqrt0.000064) is

sqrt(3sqrt(0.004096)) is equal to

sqrt( (0.25)/(0.0009) ) xx sqrt( (0.09)/(0.36)) is equal to