Home
Class 14
MATHS
If(x^(2)-2x+1)=0 ,then the value of (x^(...

If`(x^(2)-2x+1)=0` ,then the value of `(x^(4)+(1)/(x^(4)))` is:

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 2x + 1 = 0 \) and find the value of \( x^4 + \frac{1}{x^4} \), we can follow these steps: ### Step 1: Solve the quadratic equation The given equation is: \[ x^2 - 2x + 1 = 0 \] This can be factored as: \[ (x - 1)^2 = 0 \] Thus, we find: \[ x - 1 = 0 \implies x = 1 \] ### Step 2: Calculate \( x + \frac{1}{x} \) Now that we have \( x = 1 \), we can calculate: \[ x + \frac{1}{x} = 1 + \frac{1}{1} = 1 + 1 = 2 \] ### Step 3: Square \( x + \frac{1}{x} \) Next, we square the result from Step 2: \[ \left(x + \frac{1}{x}\right)^2 = 2^2 = 4 \] Expanding the left side: \[ x^2 + 2 + \frac{1}{x^2} = 4 \] This simplifies to: \[ x^2 + \frac{1}{x^2} = 4 - 2 = 2 \] ### Step 4: Square \( x^2 + \frac{1}{x^2} \) Now we square the result from Step 3: \[ \left(x^2 + \frac{1}{x^2}\right)^2 = 2^2 = 4 \] Expanding this gives: \[ x^4 + 2 + \frac{1}{x^4} = 4 \] This simplifies to: \[ x^4 + \frac{1}{x^4} = 4 - 2 = 2 \] ### Final Answer Thus, the value of \( x^4 + \frac{1}{x^4} \) is: \[ \boxed{2} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)-5x+1=0 , then the value of (x^(4) + (1)/(x^(2))) div (x^(2)+1) is

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If (x-(1)/(x))=4 , then the value of (x^(2)+(1)/(x^(2))) is :