Home
Class 14
MATHS
What is the value of [(12)/((sqrt(5)+sqr...

What is the value of `[(12)/((sqrt(5)+sqrt(3)))+(18)/((sqrt(5)-sqrt(3)))]`?

A

`15(sqrt(15)-sqrt(3))`

B

`3 ( 5 sqrt(5)+sqrt(3))`

C

`15 ( sqrt(5) + sqrt(3))`

D

`3 ( 3 sqrt(5) + sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left[\frac{12}{\sqrt{5} + \sqrt{3}} + \frac{18}{\sqrt{5} - \sqrt{3}}\right]\), we will follow these steps: ### Step 1: Find a common denominator The common denominator for the two fractions is \((\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})\). ### Step 2: Rewrite the fractions Rewriting the fractions with the common denominator, we have: \[ \frac{12(\sqrt{5} - \sqrt{3}) + 18(\sqrt{5} + \sqrt{3})}{(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})} \] ### Step 3: Simplify the numerator Now, we simplify the numerator: \[ 12(\sqrt{5} - \sqrt{3}) + 18(\sqrt{5} + \sqrt{3}) = 12\sqrt{5} - 12\sqrt{3} + 18\sqrt{5} + 18\sqrt{3} \] Combine like terms: \[ (12\sqrt{5} + 18\sqrt{5}) + (-12\sqrt{3} + 18\sqrt{3}) = 30\sqrt{5} + 6\sqrt{3} \] ### Step 4: Simplify the denominator The denominator can be simplified using the difference of squares: \[ (\sqrt{5})^2 - (\sqrt{3})^2 = 5 - 3 = 2 \] ### Step 5: Combine the results Now, we can write the entire expression as: \[ \frac{30\sqrt{5} + 6\sqrt{3}}{2} \] ### Step 6: Factor out the common term We can factor out a 6 from the numerator: \[ \frac{6(5\sqrt{5} + \sqrt{3})}{2} = 3(5\sqrt{5} + \sqrt{3}) \] ### Final Result Thus, the value of the expression is: \[ 3(5\sqrt{5} + \sqrt{3}) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value (sqrt(5)-sqrt(3))/(sqrt(5) + sqrt(3)) - (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)) ?

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?

What is the value of sqrt(5sqrt(5sqrt(5sqrt(....oo))))

(4sqrt(3)+5sqrt(2))/(sqrt(48)+sqrt(18))

The value of log_(10)(sqrt(3-sqrt(5))+sqrt(3+sqrt(5))) is