Home
Class 14
MATHS
If (x - ( 1)/( 3))^(2) + ( y - 4)^(2) =...

If `(x - ( 1)/( 3))^(2) + ( y - 4)^(2) = 0`, then what is the value of `( y +x)/( y -x)` ?

A

`(11)/(13)`

B

` ( 13)/( 11)`

C

`( 16)/( 9)`

D

`(9)/( 16)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x - \frac{1}{3})^2 + (y - 4)^2 = 0\), we can follow these steps: ### Step 1: Analyze the equation The equation is in the form of a sum of squares. The only way for this sum to equal zero is if both squares are individually equal to zero. ### Step 2: Set each square to zero 1. Set \((x - \frac{1}{3})^2 = 0\) 2. Set \((y - 4)^2 = 0\) ### Step 3: Solve for \(x\) From \((x - \frac{1}{3})^2 = 0\): \[ x - \frac{1}{3} = 0 \implies x = \frac{1}{3} \] ### Step 4: Solve for \(y\) From \((y - 4)^2 = 0\): \[ y - 4 = 0 \implies y = 4 \] ### Step 5: Substitute \(x\) and \(y\) into the expression \(\frac{y + x}{y - x}\) Now, we have \(x = \frac{1}{3}\) and \(y = 4\). Substitute these values into the expression: \[ \frac{y + x}{y - x} = \frac{4 + \frac{1}{3}}{4 - \frac{1}{3}} \] ### Step 6: Simplify the expression 1. Calculate the numerator: \[ 4 + \frac{1}{3} = \frac{12}{3} + \frac{1}{3} = \frac{13}{3} \] 2. Calculate the denominator: \[ 4 - \frac{1}{3} = \frac{12}{3} - \frac{1}{3} = \frac{11}{3} \] 3. Now substitute these into the fraction: \[ \frac{\frac{13}{3}}{\frac{11}{3}} = \frac{13}{11} \] ### Final Answer Thus, the value of \(\frac{y + x}{y - x}\) is \(\frac{13}{11}\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x + y) ^(2) = xy +1 and x ^(3) -y ^(3) = 1, what is the value of (x-y) ?

If 2^(x) + 3^(y) = 17 and 2^(x+1)-3^(y+1)=5 then what is the value of x?

If x-4y= 0 and x+2y= 24 , then what is the value of (2x+3y)//(2x-3y) ?

If 3/(x+y)+2/(x-y)=2 and 9/(x+y)-4/(x-y)=1 , then what is the value of x/y ?

If 9^(x) 3 ^(y) = 2187 and 2 ^( 3x) 2 ^( 2y) - 4 ^(xy) = 0, thwn what can be the value of (x+y)?