Home
Class 14
MATHS
If x + (( 1)/( x)) = sqrt( 13) , then wh...

If `x + (( 1)/( x)) = sqrt( 13)` , then what is the value of `x^(5) - ((1)/( x^(5)))` ?

A

169

B

`169 sqrt(3)`

C

393

D

507

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x + \frac{1}{x} = \sqrt{13} \) and find the value of \( x^5 - \frac{1}{x^5} \), we can follow these steps: ### Step 1: Square the initial equation We start with the equation: \[ x + \frac{1}{x} = \sqrt{13} \] Now, we square both sides: \[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{13})^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 13 \] Thus, we have: \[ x^2 + \frac{1}{x^2} = 13 - 2 = 11 \] ### Step 2: Find \( x^3 - \frac{1}{x^3} \) We can use the identity: \[ x^3 - \frac{1}{x^3} = \left( x + \frac{1}{x} \right) \left( x^2 - 1 + \frac{1}{x^2} \right) \] We already know \( x + \frac{1}{x} = \sqrt{13} \) and \( x^2 + \frac{1}{x^2} = 11 \). Therefore: \[ x^2 - 1 + \frac{1}{x^2} = (x^2 + \frac{1}{x^2}) - 1 = 11 - 1 = 10 \] Now substituting back: \[ x^3 - \frac{1}{x^3} = \sqrt{13} \cdot 10 = 10\sqrt{13} \] ### Step 3: Find \( x^5 - \frac{1}{x^5} \) We can use the identity: \[ x^5 - \frac{1}{x^5} = \left( x^3 - \frac{1}{x^3} \right) \left( x^2 + 1 + \frac{1}{x^2} \right) \] We already calculated \( x^3 - \frac{1}{x^3} = 10\sqrt{13} \) and we know \( x^2 + \frac{1}{x^2} = 11 \), so: \[ x^2 + 1 + \frac{1}{x^2} = 11 + 1 = 12 \] Now substituting back: \[ x^5 - \frac{1}{x^5} = (10\sqrt{13}) \cdot 12 = 120\sqrt{13} \] ### Final Answer Thus, the value of \( x^5 - \frac{1}{x^5} \) is: \[ \boxed{120\sqrt{13}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=3 then what is the value of x^(5)+(1)/(x^(5)) ?