Home
Class 14
MATHS
What is the simplified value of tan ((th...

What is the simplified value of `tan ((theta )/( 2)) + cot ((theta )/( 2))` ?

A

2 cosec `theta`

B

2 sec `theta`

C

sin` theta`

D

cosec `theta `

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \tan\left(\frac{\theta}{2}\right) + \cot\left(\frac{\theta}{2}\right) \), we can follow these steps: ### Step 1: Rewrite the tangent and cotangent We know that: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} \] \[ \cot\left(\frac{\theta}{2}\right) = \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] Thus, we can rewrite the expression as: \[ \tan\left(\frac{\theta}{2}\right) + \cot\left(\frac{\theta}{2}\right) = \frac{\sin\left(\frac{\theta}{2}\right)}{\cos\left(\frac{\theta}{2}\right)} + \frac{\cos\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)} \] ### Step 2: Find a common denominator The common denominator for the two fractions is \( \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \). Therefore, we can combine the fractions: \[ = \frac{\sin^2\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)} \] ### Step 3: Use the Pythagorean identity From the Pythagorean identity, we know that: \[ \sin^2\left(\frac{\theta}{2}\right) + \cos^2\left(\frac{\theta}{2}\right) = 1 \] Thus, we can simplify the numerator: \[ = \frac{1}{\sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right)} \] ### Step 4: Simplify further using double angle identity We can use the double angle identity for sine: \[ \sin\left(\theta\right) = 2 \sin\left(\frac{\theta}{2}\right) \cos\left(\frac{\theta}{2}\right) \] So, we can rewrite the expression as: \[ = \frac{2}{\sin\left(\theta\right)} \] ### Step 5: Final result Thus, the simplified value of \( \tan\left(\frac{\theta}{2}\right) + \cot\left(\frac{\theta}{2}\right) \) is: \[ = 2 \cdot \frac{1}{\sin\left(\theta\right)} = \frac{2}{\sin\left(\theta\right)} \]
Promotional Banner