Home
Class 14
MATHS
If x^((1)/(4)) + x^((-1)/(4))=2, then wh...

If `x^((1)/(4)) + x^((-1)/(4))=2`, then what is the value of `x^(81) + ((1)/(x^(81)))`?

A

`-2`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{\frac{1}{4}} + x^{-\frac{1}{4}} = 2 \) and find the value of \( x^{81} + \frac{1}{x^{81}} \), we can follow these steps: ### Step 1: Simplify the Given Equation Given: \[ x^{\frac{1}{4}} + x^{-\frac{1}{4}} = 2 \] Let \( y = x^{\frac{1}{4}} \). Then the equation becomes: \[ y + \frac{1}{y} = 2 \] ### Step 2: Multiply by \( y \) Multiply both sides by \( y \): \[ y^2 + 1 = 2y \] Rearranging gives: \[ y^2 - 2y + 1 = 0 \] ### Step 3: Factor the Quadratic Equation The equation can be factored as: \[ (y - 1)^2 = 0 \] Thus, we find: \[ y - 1 = 0 \implies y = 1 \] ### Step 4: Substitute Back for \( x \) Since \( y = x^{\frac{1}{4}} \), we have: \[ x^{\frac{1}{4}} = 1 \] Raising both sides to the power of 4 gives: \[ x = 1 \] ### Step 5: Find \( x^{81} + \frac{1}{x^{81}} \) Now we need to calculate: \[ x^{81} + \frac{1}{x^{81}} \] Substituting \( x = 1 \): \[ 1^{81} + \frac{1}{1^{81}} = 1 + 1 = 2 \] ### Final Answer Thus, the value of \( x^{81} + \frac{1}{x^{81}} \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=5 then what is the value of (x^(4)+(1)/(x^(2)))/(x^(2)-3x+1) ?

If 2x+(1)/(2x)=2 , then what is the value of sqrt(2((1)/(x))^(4)+((1)/(x))^(5)) ?

If x^(4) +(1)/(x^(4)) =119 and x gt 1 then what is the value of x^(3)-(1)/(x^(3)) ?

If x^(4) + (1)/( x^4) = 98 and x gt 1 , then what is the value of x - (1)/( x)?