Home
Class 14
MATHS
If x^(2) + ((1)/(x^(2))) =1, then what i...

If `x^(2) + ((1)/(x^(2))) =1`, then what is the value of `x^(48) + x^(42) + x^(36) + x^(30) + x^(24) + x^(18) + x^(12) + x^(6) + 1`?

A

`-9`

B

0

C

1

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 + \frac{1}{x^2} = 1 \) and find the value of \( x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{6} + 1 \), we will follow these steps: ### Step 1: Solve for \( x + \frac{1}{x} \) Given: \[ x^2 + \frac{1}{x^2} = 1 \] We can rewrite this as: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] So, we have: \[ \left( x + \frac{1}{x} \right)^2 - 2 = 1 \] Adding 2 to both sides: \[ \left( x + \frac{1}{x} \right)^2 = 3 \] Taking the square root: \[ x + \frac{1}{x} = \sqrt{3} \quad \text{or} \quad x + \frac{1}{x} = -\sqrt{3} \] ### Step 2: Find \( x^3 + \frac{1}{x^3} \) Using the identity: \[ x^3 + \frac{1}{x^3} = \left( x + \frac{1}{x} \right)^3 - 3\left( x + \frac{1}{x} \right) \] Substituting \( x + \frac{1}{x} = \sqrt{3} \): \[ x^3 + \frac{1}{x^3} = \left( \sqrt{3} \right)^3 - 3\sqrt{3} = 3\sqrt{3} - 3\sqrt{3} = 0 \] ### Step 3: Establish a recurrence relation Let \( a_n = x^n + \frac{1}{x^n} \). We know: - \( a_0 = 2 \) - \( a_1 = \sqrt{3} \) - \( a_2 = 1 \) - \( a_3 = 0 \) Using the recurrence relation: \[ a_n = \left( x + \frac{1}{x} \right) a_{n-1} - a_{n-2} \] We can compute further values: - For \( n = 4 \): \[ a_4 = \sqrt{3} \cdot 0 - 1 = -1 \] - For \( n = 5 \): \[ a_5 = \sqrt{3} \cdot (-1) - 0 = -\sqrt{3} \] - For \( n = 6 \): \[ a_6 = \sqrt{3} \cdot (-\sqrt{3}) - (-1) = -3 + 1 = -2 \] - For \( n = 7 \): \[ a_7 = \sqrt{3} \cdot (-2) - (-\sqrt{3}) = -2\sqrt{3} + \sqrt{3} = -\sqrt{3} \] - For \( n = 8 \): \[ a_8 = \sqrt{3} \cdot (-\sqrt{3}) - (-2) = -3 + 2 = -1 \] ### Step 4: Identify the pattern Continuing this way, we can observe that the values of \( a_n \) repeat every 6 terms: - \( a_0 = 2 \) - \( a_1 = \sqrt{3} \) - \( a_2 = 1 \) - \( a_3 = 0 \) - \( a_4 = -1 \) - \( a_5 = -\sqrt{3} \) - \( a_6 = -2 \) (and then it repeats) ### Step 5: Calculate the required sum Now, we need to find: \[ x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{6} + 1 \] Since \( 48, 42, 36, 30, 24, 18, 12, 6 \) all correspond to \( a_0, a_6, a_0, a_6, a_0, a_6, a_0, a_6 \) respectively, we can substitute: \[ = 2 + (-2) + 2 + (-2) + 2 + (-2) + 2 + (-2) + 1 \] Grouping the terms: \[ (2 - 2) + (2 - 2) + (2 - 2) + (2 - 2) + 1 = 0 + 0 + 0 + 0 + 1 = 1 \] ### Final Answer Thus, the value of \( x^{48} + x^{42} + x^{36} + x^{30} + x^{24} + x^{18} + x^{12} + x^{6} + 1 \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x-(1)/(2x)=6 then what is the value of x^(2)+(1)/(16x^(2)) ?

If (x^(2)+(1)/(x^(2)))=6 , then the value of (x+(1)/(x)) is :

If (x^(24) + 1)/x^(12) = 7 then the value of (x^(72) + 1)/x^(36) is

If x^((1)/(12))=219^((1)/(24)), what is the value of X?