Home
Class 14
MATHS
What is the simplified value of sin^(2) ...

What is the simplified value of `sin^(2) (90- theta) - [({sin(90-theta) sin theta})/(tan theta)]`?

A

1

B

cosec `theta`

C

0

D

`cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( \sin^2(90^\circ - \theta) - \left( \frac{\sin(90^\circ - \theta) \sin \theta}{\tan \theta} \right) \), we can follow these steps: ### Step 1: Use the co-function identity for sine We know that: \[ \sin(90^\circ - \theta) = \cos(\theta) \] Thus, we can rewrite the expression: \[ \sin^2(90^\circ - \theta) = \cos^2(\theta) \] ### Step 2: Substitute into the expression Now substitute \( \sin(90^\circ - \theta) \) in the expression: \[ \cos^2(\theta) - \left( \frac{\cos(\theta) \sin(\theta)}{\tan(\theta)} \right) \] ### Step 3: Simplify the fraction Recall that: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] Thus, we can rewrite the fraction: \[ \frac{\cos(\theta) \sin(\theta)}{\tan(\theta)} = \frac{\cos(\theta) \sin(\theta)}{\frac{\sin(\theta)}{\cos(\theta)}} = \cos^2(\theta) \] ### Step 4: Substitute back into the expression Now the expression becomes: \[ \cos^2(\theta) - \cos^2(\theta) \] ### Step 5: Simplify the expression This simplifies to: \[ 0 \] ### Final Answer Thus, the simplified value of the expression is: \[ \boxed{0} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the simplified value of [(cos^(2) theta)/(1+sin theta)- (sin^(2) theta)/(1 + cos theta)]^(2) ?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?

What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta) ?

What is the value of [tan^2 (90- theta)-sec^2 (90 - theta)] tan^2 (90- theta) cot^2 (90 -theta) ?

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

Value of sec theta(1-sin theta)(sin theta+tan theta) is

Value of sec theta(1-sin theta)(sin theta+tan theta) is