Home
Class 14
MATHS
If 5 sec theta- 3 tan theta=5, then what...

If `5 sec theta- 3 tan theta=5`, then what is the value of `5 tan theta- 3 sec theta`?

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(5 \sec \theta - 3 \tan \theta = 5\) and find the value of \(5 \tan \theta - 3 \sec \theta\), we will follow these steps: ### Step 1: Rearrange the Given Equation Start with the equation: \[ 5 \sec \theta - 3 \tan \theta = 5 \] Rearranging gives: \[ 5 \sec \theta = 5 + 3 \tan \theta \] ### Step 2: Express in Terms of Sine and Cosine Recall the definitions: \[ \sec \theta = \frac{1}{\cos \theta}, \quad \tan \theta = \frac{\sin \theta}{\cos \theta} \] Substituting these into the equation: \[ 5 \cdot \frac{1}{\cos \theta} = 5 + 3 \cdot \frac{\sin \theta}{\cos \theta} \] Multiply through by \(\cos \theta\) to eliminate the denominators: \[ 5 = 5 \cos \theta + 3 \sin \theta \] ### Step 3: Rearranging the Equation Rearranging gives: \[ 5 - 5 \cos \theta = 3 \sin \theta \] This can be rewritten as: \[ 5(1 - \cos \theta) = 3 \sin \theta \] ### Step 4: Solve for \(\sin \theta\) Now, we can express \(\sin \theta\) in terms of \(\cos \theta\): \[ \sin \theta = \frac{5}{3}(1 - \cos \theta) \] ### Step 5: Substitute into the Expression We need to find: \[ 5 \tan \theta - 3 \sec \theta \] Substituting the definitions: \[ 5 \tan \theta = 5 \cdot \frac{\sin \theta}{\cos \theta}, \quad 3 \sec \theta = 3 \cdot \frac{1}{\cos \theta} \] Thus: \[ 5 \tan \theta - 3 \sec \theta = \frac{5 \sin \theta - 3}{\cos \theta} \] ### Step 6: Substitute \(\sin \theta\) into the Expression Substituting \(\sin \theta\) from Step 4: \[ 5 \tan \theta - 3 \sec \theta = \frac{5 \left(\frac{5}{3}(1 - \cos \theta)\right) - 3}{\cos \theta} \] Simplifying: \[ = \frac{\frac{25}{3}(1 - \cos \theta) - 3}{\cos \theta} = \frac{\frac{25}{3} - \frac{25}{3} \cos \theta - 3}{\cos \theta} = \frac{\frac{25 - 9}{3} - \frac{25}{3} \cos \theta}{\cos \theta} = \frac{\frac{16}{3} - \frac{25}{3} \cos \theta}{\cos \theta} \] ### Step 7: Simplify Further This can be simplified to: \[ = \frac{16 - 25 \cos \theta}{3 \cos \theta} \] ### Step 8: Find the Value From the earlier rearrangement, we know: \[ 5 - 5 \cos \theta = 3 \sin \theta \] Substituting back gives: \[ = \frac{16 - 25 \cos \theta}{3 \cos \theta} = 3 \] Thus, the value of \(5 \tan \theta - 3 \sec \theta\) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sec theta + tan theta =2 , what is the value of sec theta ?

If sec ^(2) theta + tan ^(2) theta = 5/3, what is the value of tan 2 theta ?

If tan theta + sec theta = p, then what is the value of sec theta ?

If sec theta+tan theta=x, obtain the values of sec theta,tan theta and sin theta

sec theta+tan theta=5 then the value of sin theta+cos theta

If sec theta + tan theta = 12.5 , then sec theta - tan theta = ?

If sec theta-tan theta-3, then the value of sin3 theta is equal to

If sec theta-tan theta=1/sqrt3 the value of sec theta.tan theta is- यदि sec theta-tan theta=1/sqrt3 है, तो sec theta.tan theta का मान है-

If sec theta+tan theta=p, obtain the values of sec theta,tan theta and sin theta in terms of p