Home
Class 14
MATHS
If sec ^(2) theta + tan ^(2) theta = 5/3...

If `sec ^(2) theta + tan ^(2) theta = 5/3,` what is the value of tan `2 theta` ?

A

`2sqrt3`

B

`sqrt3`

C

`(1)/(sqrt3)`

D

cannot be detrmined

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: 1. **Given Equation**: \[ \sec^2 \theta + \tan^2 \theta = \frac{5}{3} \] 2. **Using the Identity**: We know the trigonometric identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] Let's denote: \[ x = \sec^2 \theta \quad \text{and} \quad y = \tan^2 \theta \] Thus, we can rewrite our equations as: \[ x + y = \frac{5}{3} \quad \text{(1)} \] \[ x - y = 1 \quad \text{(2)} \] 3. **Adding the Two Equations**: Now, we can add equations (1) and (2): \[ (x + y) + (x - y) = \frac{5}{3} + 1 \] Simplifying this gives: \[ 2x = \frac{5}{3} + \frac{3}{3} = \frac{8}{3} \] Therefore: \[ x = \frac{4}{3} \] 4. **Substituting Back to Find y**: Now, substitute \( x \) back into equation (1): \[ \frac{4}{3} + y = \frac{5}{3} \] Solving for \( y \): \[ y = \frac{5}{3} - \frac{4}{3} = \frac{1}{3} \] 5. **Finding tan 2θ**: We know that: \[ \tan^2 \theta = y = \frac{1}{3} \] Now, we can use the double angle formula for tangent: \[ \tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta} \] First, we find \( \tan \theta \): \[ \tan \theta = \sqrt{\tan^2 \theta} = \sqrt{\frac{1}{3}} = \frac{1}{\sqrt{3}} \] Now substituting into the double angle formula: \[ \tan 2\theta = \frac{2 \cdot \frac{1}{\sqrt{3}}}{1 - \frac{1}{3}} = \frac{2/\sqrt{3}}{2/3} = \frac{2/\sqrt{3} \cdot 3/2} = \frac{3}{\sqrt{3}} = \sqrt{3} \] 6. **Final Answer**: Therefore, the value of \( \tan 2\theta \) is: \[ \tan 2\theta = \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

3(sec^(2)theta+tan^(2)theta)=5

If tan ^(2) theta + cot^(2) theta = 2 , then what is the value of 2^(sec theta cosec theta ) ?

If sec theta + tan theta =2 , what is the value of sec theta ?

If 5 sec theta- 3 tan theta=5 , then what is the value of 5 tan theta- 3 sec theta ?

Solve 3(sec^(2) theta+tan^(2) theta)=5 .

If sec^(2)theta+tan^(2)theta=7 , then the value of theta

If cos theta + sec theta = k , what is the value of sin^(2)theta - tan^2 theta ?

tan^(2)theta+sec theta=5, then find the value of cos theta

If sec^(2)theta-sectheta=1 , then what is the value of (tan^(12)theta-3tan^(10)theta+3tan^(8)theta-tan^(6)theta) ?

If sec^(4)theta-sec^(2)theta=3 then the value of tan^(4)theta+tan^(2)theta is :