Home
Class 14
MATHS
If x+y+z=0 then what is the value of (x^...

If `x+y+z=0` then what is the value of `(x^2)/(3z)+(y^3)/(3xz)+(z^2)/(3x)`?

A

`0`

B

`xz`

C

`y`

D

`3y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \(\frac{x^2}{3z} + \frac{y^3}{3xz} + \frac{z^2}{3x}\) given that \(x + y + z = 0\). ### Step-by-Step Solution: 1. **Write the expression**: We start with the expression: \[ \frac{x^2}{3z} + \frac{y^3}{3xz} + \frac{z^2}{3x} \] 2. **Find a common denominator**: The common denominator for the three fractions is \(3xyz\). We will rewrite each term with this common denominator: \[ \frac{x^2}{3z} = \frac{x^2 \cdot xy}{3xyz} = \frac{x^3y}{3xyz} \] \[ \frac{y^3}{3xz} = \frac{y^3 \cdot yz}{3xyz} = \frac{y^4z}{3xyz} \] \[ \frac{z^2}{3x} = \frac{z^2 \cdot zx}{3xyz} = \frac{z^3x}{3xyz} \] 3. **Combine the fractions**: Now, we can combine the fractions: \[ \frac{x^3y + y^4z + z^3x}{3xyz} \] 4. **Use the identity for cubes**: We know from algebra that if \(x + y + z = 0\), then: \[ x^3 + y^3 + z^3 = 3xyz \] Thus, we can express \(x^3 + y^3 + z^3\) in terms of \(xyz\). 5. **Substitute the identity**: We can rewrite the numerator: \[ x^3 + y^3 + z^3 = 3xyz \] Therefore, we can replace \(x^3 + y^3 + z^3\) in our expression: \[ x^3y + y^4z + z^3x = y(x^3 + y^3 + z^3) = y(3xyz) \] 6. **Simplify the expression**: Substituting this back into our combined fraction gives: \[ \frac{y(3xyz)}{3xyz} = y \] 7. **Final answer**: Thus, the value of the expression is: \[ \boxed{y} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=0, then what is the value of (3y^2+x^2+z^2)//(2y^2-xz) ?

If x + y + z = 0, then what is the value of (3y^2 + x^2 + z^2 )//(2y^2 - xz) ?

If x = 2+ sqrt3, y = 2- sqrt3 and z = 1, then what is the value of (x//yz) + (y//xz) + (z//xy) + 2[(1//x)+ (1//y) + (1//z)] ?

If x=3, y=2 and z=-1 , then the value of (x^3+y^3+1)/(y^3-z^3) is

Value of (x-y)^(3) +(y-z)^(3) +(z-x)^(3) is

If x^(3)+y^(3)+z^(3)=3xyz and x+y+z=0 , then the value of ((x+y)^(2))/(xy)+((y+z)^(2))/(yz)+((z+x)^(2))/(zx) is