Home
Class 14
MATHS
If " cosec"^(2) theta=(625)/(576), then ...

If `" cosec"^(2) theta=(625)/(576)`, then what is the value of `[((sin theta - cos theta))/(sin theta + cos theta)]`?

A

`1`

B

`(31)/(17)`

C

`(17)/(31)`

D

`(14)/(25)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \csc^2 \theta = \frac{625}{576} \] ### Step 1: Convert to sine and cosine We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] From the definition of cosecant, we also have: \[ \csc \theta = \frac{1}{\sin \theta} \] Thus, \[ \csc^2 \theta = \frac{1}{\sin^2 \theta} \] Setting the two expressions for \(\csc^2 \theta\) equal gives us: \[ \frac{1}{\sin^2 \theta} = \frac{625}{576} \] ### Step 2: Find \(\sin^2 \theta\) Taking the reciprocal of both sides, we get: \[ \sin^2 \theta = \frac{576}{625} \] ### Step 3: Find \(\sin \theta\) Taking the square root of both sides, we find: \[ \sin \theta = \frac{24}{25} \] ### Step 4: Find \(\cos^2 \theta\) Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\sin^2 \theta\): \[ \frac{576}{625} + \cos^2 \theta = 1 \] This simplifies to: \[ \cos^2 \theta = 1 - \frac{576}{625} = \frac{625 - 576}{625} = \frac{49}{625} \] ### Step 5: Find \(\cos \theta\) Taking the square root, we have: \[ \cos \theta = \frac{7}{25} \] ### Step 6: Calculate \((\sin \theta - \cos \theta)\) and \((\sin \theta + \cos \theta)\) Now we can find \(\sin \theta - \cos \theta\) and \(\sin \theta + \cos \theta\): \[ \sin \theta - \cos \theta = \frac{24}{25} - \frac{7}{25} = \frac{24 - 7}{25} = \frac{17}{25} \] \[ \sin \theta + \cos \theta = \frac{24}{25} + \frac{7}{25} = \frac{24 + 7}{25} = \frac{31}{25} \] ### Step 7: Find the final expression Now we can find the value of: \[ \frac{\sin \theta - \cos \theta}{\sin \theta + \cos \theta} = \frac{\frac{17}{25}}{\frac{31}{25}} = \frac{17}{31} \] Thus, the final answer is: \[ \frac{17}{31} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

What is the value of (sin theta)/(cosec theta)+(cos theta)/(sec theta) ?

If sec theta-csc theta=(4)/(3) then what is the value of sin theta-cos theta

Find the value of |[cos theta,-sin theta],[sin theta,cos theta]|

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

(cosec theta-sin theta)(sec theta-cos theta)=sin theta. cos theta