Home
Class 14
MATHS
What is the value of (3)/(2)((cos 39)/(s...

What is the value of `(3)/(2)((cos 39)/(sin 51))-sqrt(sin^(2)39+sin^(2)51)`?

A

`(1)/(2)`

B

`(5)/(2)`

C

`0`

D

Both `(1)/(2)" and "(5)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{3}{2}\left(\frac{\cos 39^\circ}{\sin 51^\circ}\right) - \sqrt{\sin^2 39^\circ + \sin^2 51^\circ}\), we can follow these steps: ### Step 1: Simplify \(\sin 51^\circ\) Using the co-function identity, we know that: \[ \sin 51^\circ = \sin(90^\circ - 39^\circ) = \cos 39^\circ \] Thus, we can rewrite the expression: \[ \frac{3}{2}\left(\frac{\cos 39^\circ}{\cos 39^\circ}\right) - \sqrt{\sin^2 39^\circ + \sin^2 51^\circ} \] ### Step 2: Simplify the fraction Since \(\frac{\cos 39^\circ}{\cos 39^\circ} = 1\), we have: \[ \frac{3}{2}(1) - \sqrt{\sin^2 39^\circ + \sin^2 51^\circ} \] This simplifies to: \[ \frac{3}{2} - \sqrt{\sin^2 39^\circ + \sin^2 51^\circ} \] ### Step 3: Simplify \(\sin^2 51^\circ\) Now, substituting \(\sin 51^\circ\) with \(\cos 39^\circ\): \[ \sin^2 51^\circ = \cos^2 39^\circ \] Thus, we can write: \[ \sin^2 39^\circ + \sin^2 51^\circ = \sin^2 39^\circ + \cos^2 39^\circ \] ### Step 4: Apply the Pythagorean identity Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 39^\circ + \cos^2 39^\circ = 1 \] Now we substitute this back into the expression: \[ \frac{3}{2} - \sqrt{1} \] ### Step 5: Calculate the square root Since \(\sqrt{1} = 1\), we have: \[ \frac{3}{2} - 1 \] ### Step 6: Simplify the final expression Now, simplifying \(\frac{3}{2} - 1\): \[ \frac{3}{2} - \frac{2}{2} = \frac{1}{2} \] ### Final Result Thus, the value of the expression is: \[ \frac{1}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (3)/(2)((cos39)/(sin51))-sqrt(sin^(2)39+sin^(2)51) ?

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

The value of (1)/(sqrt(2)) (cos A - sin A) is

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/(2))}]

If cosec39^(@)=x , then the value of (1)/(cosec^(2)51^(@))+sin^(2)39^(@)+tan^(2)51^(@)-(1)/(sin^(2)51^(@)sec^(2)39^(@)) is.