Home
Class 14
MATHS
What is the value of sqrt(2) sec 45^(@)+...

What is the value of `sqrt(2) sec 45^(@)+(1)/sqrt(3) tan 30^(@)`

A

`(1+sqrt(3))/(2)`

B

`(1+3sqrt(2))/sqrt(3)`

C

`7/3`

D

`(3+2sqrt(2))/(3sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{2} \sec 45^\circ + \frac{1}{\sqrt{3}} \tan 30^\circ \), we will follow these steps: ### Step 1: Find the value of \( \sec 45^\circ \) The secant function is the reciprocal of the cosine function. Therefore, we have: \[ \sec 45^\circ = \frac{1}{\cos 45^\circ} \] Since \( \cos 45^\circ = \frac{1}{\sqrt{2}} \), we can calculate: \[ \sec 45^\circ = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2} \] ### Step 2: Find the value of \( \tan 30^\circ \) The tangent function is the ratio of the sine function to the cosine function. Thus, we have: \[ \tan 30^\circ = \frac{\sin 30^\circ}{\cos 30^\circ} \] We know that \( \sin 30^\circ = \frac{1}{2} \) and \( \cos 30^\circ = \frac{\sqrt{3}}{2} \). Therefore: \[ \tan 30^\circ = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \] ### Step 3: Substitute the values into the expression Now we can substitute the values we found into the original expression: \[ \sqrt{2} \sec 45^\circ + \frac{1}{\sqrt{3}} \tan 30^\circ = \sqrt{2} \cdot \sqrt{2} + \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \] ### Step 4: Simplify the expression Calculating each term: \[ \sqrt{2} \cdot \sqrt{2} = 2 \] \[ \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} = \frac{1}{3} \] Now combine these results: \[ 2 + \frac{1}{3} \] ### Step 5: Find a common denominator and add To add \( 2 \) and \( \frac{1}{3} \), we convert \( 2 \) into a fraction with a denominator of \( 3 \): \[ 2 = \frac{6}{3} \] Now add: \[ \frac{6}{3} + \frac{1}{3} = \frac{7}{3} \] ### Final Answer Thus, the value of \( \sqrt{2} \sec 45^\circ + \frac{1}{\sqrt{3}} \tan 30^\circ \) is: \[ \frac{7}{3} \]
Promotional Banner