Home
Class 12
MATHS
f(x)+sinxf(x+pi)=sin^2x...

`f(x)+sinxf(x+pi)=sin^2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)= sin^(2)x + sin^(2) (x + (pi)/(3)) + cos x cos (x + (pi)/(3)) then f'(x) = ………

Statement 1: For f(x)=sin x,f'(pi)=f'(3 pi). Statement 2: For f(x)=sin x,f(pi)=f(3 pi)

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

Let f(x) = sin(pi[x]) + sin([pi^(2)]x) + cos ([-pi^(2)]x/3) AA x in R , then f(pi//4) is equal to

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]

which of the following statement is // are true ? (i) f(x) =sin x is increasing in interval [(-pi)/(2),(pi)/(2)] (ii) f(x) = sin x is increasing at all point of the interval [(-pi)/(2),(pi)/(2)] (3) f(x) = sin x is increasing in interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (4) f(x)=sin x is increasing at all point of the interval ((-pi)/(2),(pi)/(2)) UU ((3pi)/(2),(5pi)/(2)) (5) f(x) = sin x is increasing in intervals [(-pi)/(2),(pi)/(2)]& [(3pi)/(2),(5pi)/(2)]