Home
Class 12
MATHS
Let g(x) be a polynomial of degree one a...

Let `g(x)` be a polynomial of degree one and `f(x)` is defined by `f(x)={g(x)`, `xleq0` and `((1+x)/(2+x))^(1/x)`,`xgt0`} Find `g(x)` such that `f(x)` is continuous and `f'(1)=f(-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial of degree one and f(x) be a function defined by f(x)={(g(x), x le0), ((1+x)/(2+x)^(1//x), x gt0):} If f(x) is continuous at x=0 and f(-1)=f'(1), then g(x) is equal to :

Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=-g(x), x 0 If f(x) is continuous satisfying f'(1)=f(-1) , then g(x) is

Let g(x) be a polynomial of degree one and f(x) be defined by f(x)=-{g(x),x 0 If f(x) is continuous satisfying f'(1)=f(-1) then g(x) is

Let f(x) be defined on [-2,2] and is given by f(x)={(-1, -2lexlt0),(x-1, 0lexle2):} and g(x)=f(|x|)+|f(x)|, then find g(x).

Let f and g be two functions defined by f(x)=sqrt(x-1) ,and g(x)=sqrt(4-x^2) .Find f-g

Let f and g be two functions defined by f(x)=sqrt(x-1) ,and g(x)=sqrt(4-x^2) .Find f/g

Let f= R rarr R and g: R rarr R defined by f(x)=x+1,g(x)=2x-3 .Find (f+g)(x) and (f-g)(x) .

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f+g

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find f-g

If f and g are two real valued functions defined as f(x)= 2x+1 and g(x)= x^(2)+1 , then find (f)/(g) .