Home
Class 12
MATHS
x=(3at)/(1+t^(3)),y=(3at^(2))/(1+t^(3))...

x=(3at)/(1+t^(3)),y=(3at^(2))/(1+t^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x=(3a t)/(1+t^3) ; y=(3a t^2)/(1+t^3)

Find (dy)/(dx), when x=(3at)/(1+t^(2)) and y=(3at^(2))/(1+t^(2))

Find (dy)/(dx),quad when x=(3at)/(a+t^(2)) and y=(3at^(2))/(1+t^(2))

If x=(3at)/(1+t^2),y=(3at^2)/(1+t^2) then (dy)/(dx) =

Find the point (S) on the curve x=(3at)/(1+t^2) , y=(3at^2)/(1+t^2) where the tangent is perependicular to the line 4x+3y+5=0.

If x=(1+t)/(t^(3)),y=(3)/(2t^(2))+(2)/(t) then x((dy)/(dx))^(3)-(dy)/(dx), equals to