Home
Class 12
MATHS
" 35.If "x=(sin^(3)t)/(sqrt(cos2t))&y=(c...

" 35.If "x=(sin^(3)t)/(sqrt(cos2t))&y=(cos^(3)t)/(sqrt(cos2t))" then show that "(dy)/(dx)=-Cot3t

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(sin^(3)t)/(sqrt(cos2t)),y=(cos^(3)t)/(sqrt(cos2t)) show that (dy)/(dx)=0att=(pi)/(6)

If x=(sin^(3)t)/(sqrt(cos2t)) and y=(cos^(3)t)/(sqrt(cos2t)) , then find (dy)/(dx) .

x = (sin^3t)/(sqrt(cos 2t)), y = (cos^3 t)/(sqrt(cos 2t)) .

If x=(sin^(3)t)/(sqrt(cos 2t)) and y=(cos^(3)t)/( sqrt(cos 2t)) , show that (dy)/(dx)=0 at t=(pi)/(6) .

If x=sin^3t/(sqrtcos2t), y=cos^3t/sqrt(cos2t) show that dy/dx =0 at t=pi/6

Find (dy)/(dx) , if x=(sin^3t)/(sqrt(cos2t)) , y=(cos^3t)/(sqrt(cos2t))

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

x= sin^3t/sqrt x cos2t , y= cos^3t/ sqrt x cos2t .

Find dy/dx x=cos^(3)t/sqrtcos2t , y = sin^(3)t/sqrt cos2t