Home
Class 12
MATHS
" 6."x=a(theta-sin theta)(4)y=a(1+cos th...

" 6."x=a(theta-sin theta)_(4)y=a(1+cos theta)" ? "

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a ( theta - sin theta), y =a (1 - cos theta) then y _(2) at theta = pi //4 is

If x=-a(theta-sin theta),y=a(1-cos theta), then (dy)/(dx) is

If x=a ( theta -sin theta ) ,y=a(1-cos theta ) ,then (dy)/(dx) =

If x= a(cos theta + sin theta ), y= a(sin theta + cos theta ), then [( d^2 y)/(d x^2 ) ] at theta = pi /4 ............. A) 0 B) 1 C) -1 D) 1/sqrt 2

Show that ((cos theta - cos 3theta)(sin 8theta + sin 2 theta))/((sin 5 theta - sin theta)(cos 4 theta - cos 6 theta)) = 1

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

The value of 3(cos theta-sin theta)^(4)+6(sin theta+cos theta)^(2)+4 sin^(6) theta is where theta in ((pi)/(4),(pi)/(2)) (a) 13-4cos^(4) theta (b) 13-4cos^(6) theta (c) 13-4cos^(6) theta+ 2 sin^(4) theta cos^(2) theta (d) 13-4cos^(4) theta+ 2 sin^(4) theta cos^(2) theta

The equation of the locus of the point of intersection of the straight lines x sin theta + (1- cos theta) y = a sin theta and x sin theta -(1+ cos theta) y + a sin theta =0 is: