Home
Class 12
MATHS
inte^x[1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1...

`inte^x[1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5))]dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

int (sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

Evaluate: inte^xdot(sqrt(1-x^2)sin^(-1)x+1)/(sqrt(1-x^2))\ dx

"int((1)/(sqrt(1-x^(2)))+(2)/(sqrt(1+x^(2))))dx,|x|<1