Home
Class 12
MATHS
If a,b,c,d inRR are such that a^2+b^2=4 ...

If `a,b,c,d inRR` are such that `a^2+b^2=4 and c^2+d^2=2` and if `(a+ib)^2=(c+id)^2(x+iy)" then " x^2+y^2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x -iy = sqrt([(a - ib)/(c-id)]) , then (x^(2) + y^(2))^(2) =

If x+iy= sqrt(((a+ib))/((c+id))) , then x^2+y^2 equals :

If x,y,a,b,c,d are real and x+iy= sqrt((a+ib)/(c+id))" then "(x^(2)+y^(2))^(2)=

If (a+ib)(c+id)(e+if)(g+ih) = A+ iB, then show that ( a^2 + b^2 ) ( c^2 + d^2 )( e^2 + f^2 )( g^2 + h^2 )= ( A^2 + B^2 )

If (a+ib)(x+iy)=(a^(2)+b^(2))i , then (x,y) is

If (a+ib)(c+id)=x+iy ,prove that x^2+y^2=(a^2+b^2)(c^2+d^2)

If (a+ib)/(c+id)=x + iy , show that : x^2+y^2= (a^2+b^2)/(c^2 +d^2) .

If a+ib=(x+iy)/(x-iy) prove that a^2+b^2=1 and b/a=(2xy)/(x^2-y^2)

If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)

If a,b,c,d,x,y are real and (a+ib)(c+id)=x+iy, show that , (ac-bd)^(2)+(ad+bc)^(2)=x^(2)+y^(2)