Home
Class 12
MATHS
" (ii) "(x^(3)-3xy^(2))dx=(y^(3)-3^(2)y)...

" (ii) "(x^(3)-3xy^(2))dx=(y^(3)-3^(2)y)dy

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^(3)-3xy^(2))dx=(y^(3)-3x^(2)y)dy

(x^(3)+3xy^(2))dx+(y^(3)+3x^(2)y)dy=0

Prove that x^(2)-y^(2)=c(x^(2)+y^(2))^(2) is the general solution of differential equation (x^(3)-3xy^(2))dx=(y^(3)-3x^(2)y)dy, where c is a parameter.

Show that the differential equation representing one parameter family of curves (x^(2)-y^(2))=c(x^(2)+y^(2))^(2)is(x^(3)-3xy^(2))dx=(y^(3)-3x^(2)y)dy

Solve: (x^(3)+3xy^(2))dx=(y^(3)-3x^(2)y)dy

Solve the following differential equations (x^3-3xy^2)dx=(y^3-3x^2y)dy .