Home
Class 8
MATHS
" If "f(x)=cos(ln x)," then "f(x)*f(y)-(...

" If "f(x)=cos(ln x)," then "f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)]" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), then f(x)f(y)-(1)/(2)[f((x)/(y))+f(xy)]=

If f(x)=cos(log x), " then " f(x)*f(y)-(1)/(2)[f((x)/(y))+f(xy)] has the value

If f(x)=cos(ln x) then f(x)f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value

If f(x)=cos(logx) , then : f(x).f(y)-(1)/(2)(f((x)/(y))+f(xy)) has the value :

If f(x) = cos (log_(e) x) , then f(x)f(y) -1/2[f(x/y) + f(xy)] has value

If f(x) = cos(log x) then f(x)f(y)-1/2[f(x/y)+f(xy)] has the value