Home
Class 12
MATHS
{(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(...

{(1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+...+(1)/(n(n+1))}=?

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum : (1)/(2) + (1)/(6) + (1)/(12) + (1)/(20) + (1)/(30 ) + (1)/(42) + (1)/(56) + (1)/(72) + (1)/(90) + (1)/(110) + (1)/(132)

When simplified,the sum (1)/(2)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+backslash+(1)/(n(n+1)) is equal to (1)/(n)(b)(1)/(n+1)(c)(n)/(n+1) (d) (2(n-1))/(n)

What is the answer (1)/(6) +(1)/(12) +(1)/(20) +(1)/(30) +(1)/(42) +(1)/(56) ?

Find the sum of the following (1)/(9)+(1)/(6)+(1)/(12)+(1)/(20)+(1)/(30)+(1)/(42)+(1)/(56)+(1)/(72)

By using the principle of mathematical induction , prove the follwing : P(n) : (1)/(1.2) + (1)/(2.3) + (1)/(3.4) + …….+ (1)/(n(n+1)) = (n)/(n+1) , n in N

20(1)/(2) +30 (1)/(3) - 15(1)/(6) = ?

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

underset(n to oo)lim {(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))}=