Home
Class 11
MATHS
" If "(pi)/(2)<alpha<pi,pi<beta<(3 pi)/(...

" If "(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (cos"" (pi)/(2)+isin ""(pi)/(2))(cos ((pi)/(2^2))+isin((pi)/(2^2))) (cos ((pi)/(2^3))+isin((pi)/(2^3)))" ………."oo is

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

sin""((pi)/2+ theta ) * cos (pi- theta ) * cot ""((3pi)/(2)+ theta ) - sin""((pi)/2- theta ) * sin""((3pi)/2 - theta ) * cot ""((pi)/2 + theta ) =

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x) is continuous at x = (pi)/2 , where f(x) = (sinx)^(1/(pi-2x)), "for" x != (pi)/2 , then f((pi)/(2)) =

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.