Home
Class 12
PHYSICS
Find the value of the following :- {:(...

Find the value of the following :-
`{:((a)sin((pi)/(6)),(b)cos ((pi)/(4))), ((c)tan((pi)/(3)),(d)cos ((pi)/(2))), ((e)cot ((3pi)/(4)),(f)sin((5pi)/(6))),((g)sin pi,(h)cos pi),((i)sin((pi)/(2)),(j)sin((3pi)/(2))),((k)cos((3pi)/(2)),):}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will evaluate each trigonometric function step by step. 1. **Evaluate \( \sin\left(\frac{\pi}{6}\right) \)**: \[ \sin\left(\frac{\pi}{6}\right) = \sin(30^\circ) = \frac{1}{2} \] 2. **Evaluate \( \cos\left(\frac{\pi}{4}\right) \)**: \[ \cos\left(\frac{\pi}{4}\right) = \cos(45^\circ) = \frac{1}{\sqrt{2}} \] 3. **Evaluate \( \tan\left(\frac{\pi}{3}\right) \)**: \[ \tan\left(\frac{\pi}{3}\right) = \tan(60^\circ) = \sqrt{3} \] 4. **Evaluate \( \cos\left(\frac{\pi}{2}\right) \)**: \[ \cos\left(\frac{\pi}{2}\right) = \cos(90^\circ) = 0 \] 5. **Evaluate \( \cot\left(\frac{3\pi}{4}\right) \)**: \[ \cot\left(\frac{3\pi}{4}\right) = \cot\left(\pi - \frac{\pi}{4}\right) = -\cot\left(\frac{\pi}{4}\right) = -1 \] 6. **Evaluate \( \sin\left(\frac{5\pi}{6}\right) \)**: \[ \sin\left(\frac{5\pi}{6}\right) = \sin\left(\pi - \frac{\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] 7. **Evaluate \( \sin(\pi) \)**: \[ \sin(\pi) = 0 \] 8. **Evaluate \( \cos(\pi) \)**: \[ \cos(\pi) = -1 \] 9. **Evaluate \( \sin\left(\frac{\pi}{2}\right) \)**: \[ \sin\left(\frac{\pi}{2}\right) = 1 \] 10. **Evaluate \( \sin\left(\frac{3\pi}{2}\right) \)**: \[ \sin\left(\frac{3\pi}{2}\right) = \sin\left(\pi + \frac{\pi}{2}\right) = -1 \] 11. **Evaluate \( \cos\left(\frac{3\pi}{2}\right) \)**: \[ \cos\left(\frac{3\pi}{2}\right) = \cos\left(\pi + \frac{\pi}{2}\right) = 0 \] Now, we can summarize the values we found: - \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \) - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) - \( \cos\left(\frac{\pi}{2}\right) = 0 \) - \( \cot\left(\frac{3\pi}{4}\right) = -1 \) - \( \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2} \) - \( \sin(\pi) = 0 \) - \( \cos(\pi) = -1 \) - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \sin\left(\frac{3\pi}{2}\right) = -1 \) - \( \cos\left(\frac{3\pi}{2}\right) = 0 \) ### Final Values: - \( \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \) - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \) - \( \cos\left(\frac{\pi}{2}\right) = 0 \) - \( \cot\left(\frac{3\pi}{4}\right) = -1 \) - \( \sin\left(\frac{5\pi}{6}\right) = \frac{1}{2} \) - \( \sin(\pi) = 0 \) - \( \cos(\pi) = -1 \) - \( \sin\left(\frac{\pi}{2}\right) = 1 \) - \( \sin\left(\frac{3\pi}{2}\right) = -1 \) - \( \cos\left(\frac{3\pi}{2}\right) = 0 \)
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Differentiation)|40 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Integration)|12 Videos
  • RACE

    ALLEN|Exercise PHYSICS|10 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

Find the values of the following :- {:((a)sin390^(@)"",(b)cos 405^(@)),((c)tan420^(@)"",(d)cos 450^(@)),((e)sin(2pi+(pi)/(6)),(f)cos(2pi+(pi)/(3))):}

Evaluate the following: sin^(-1)(sin(pi)/(4)) (ii) cos^(-1)(cos2(pi)/(3))tan^(-1)(tan(pi)/(3))

sin((pi)/(3)+A).cos((pi)/(3)+B)-cos((pi)/(3)+A).sin((pi)/(3)+B)=...

Find the value of the sin^(2)((pi)/(6))+cos^(2)((pi)/(3))-tan^(2)((pi)/(4))

Evaluate the following: (sin(7 pi))/(12)(cos pi)/(4)-(cos(7 pi))/(12)(sin pi)/(4)

sin((7 pi)/(4))*cos((7 pi)/(6))*tan((3 pi)/(4))*cot((11 pi)/(6)) is equal to

(sin((pi)/(10))+sin(13(pi)/(10)))(cos^(2)((pi)/(6))-cos^(2)((pi)/(10))) is equal to

Find the principal values of the following : (i) sin^(-1)(sin.(5pi)/(3)) (ii) cos^(-1)cos((4pi)/(3)) (iii) cos [(pi)/(3) + cos^(-1) (-(1)/(2))]

Evaluate the following: (cos(2 pi))/(3)(cos pi)/(4)-(sin(2 pi))/(3)(sin pi)/(4)

cos(pi/12)+sin^2((3pi)/12)+sin^2((9pi)/12)+cos((11pi)/12)=...

ALLEN-RACE-Basic Maths (Trigonometry)
  1. Convert the following angle from radian to degree {:((a)(pi)/(4)"red...

    Text Solution

    |

  2. Find the value of following :- {:((a)sin 150^(@)"", (b)sin 135^(@)),...

    Text Solution

    |

  3. Find the value of the following :- {:((a)sin((pi)/(6)),(b)cos ((pi)/...

    Text Solution

    |

  4. Find the values of the following :- {:((a)sin390^(@)"",(b)cos 405^(@...

    Text Solution

    |

  5. Find the values of the following :- {:((a)sin(-30^(@)),(b)cos(-45^(@...

    Text Solution

    |

  6. Find the values of all the the T-Rations if :- (a) cos thata =(7)/(2...

    Text Solution

    |

  7. Calculate the value of following :- {:((a)cos75^(@)"",(b)sin15^(@)),...

    Text Solution

    |

  8. The values of sintheta(1), cos^(2)theta(2) and tan theta(3) are given ...

    Text Solution

    |

  9. Statement 1 : For very small angle theta, we may use approximation sin...

    Text Solution

    |

  10. What is value of expression 2(sin15^(@)+sin75^(@))^(2)?

    Text Solution

    |

  11. Find the value of 5(sin100^(@)cos27^(@)+sin27^(@)cos100^(@)).

    Text Solution

    |

  12. A normal human cye can see an object making an angle of 1.8^(@) at the...

    Text Solution

    |

  13. The maximum and minimum values of expression (4-2costheta) respectivel...

    Text Solution

    |

  14. Angle of elevation is the angle which line of sight makes with the hor...

    Text Solution

    |

  15. If tantheta=(24)/(7) and sintheta is negative then value of costheta w...

    Text Solution

    |

  16. Suggest suitable match between fuction given in the first column and i...

    Text Solution

    |

  17. Depending on in which quadrant an angle theta lies, functions costheta...

    Text Solution

    |

  18. An airplane takes off at an angle 30^(@) with the horizontal ground tr...

    Text Solution

    |

  19. Position-time relationship of a particle executing simple harmonic mot...

    Text Solution

    |

  20. Position-time relationship of a particle executing simple harmonic mot...

    Text Solution

    |