Home
Class 12
PHYSICS
Integrate the following (1)intx^(-3/2)...

Integrate the following
(1)`intx^(-3/2)dx`
(2)`intsin60^(@)dx`
(3)`int(1)/(10x)dx`
(4)`int(2x^(3)-x^(2)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Step 1: Integrate \( \int x^{-\frac{3}{2}} \, dx \) To integrate \( x^{-\frac{3}{2}} \), we use the power rule for integration: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] Here, \( n = -\frac{3}{2} \). Calculating \( n + 1 \): \[ n + 1 = -\frac{3}{2} + 1 = -\frac{3}{2} + \frac{2}{2} = -\frac{1}{2} \] Now, applying the power rule: \[ \int x^{-\frac{3}{2}} \, dx = \frac{x^{-\frac{1}{2}}}{-\frac{1}{2}} + C = -2 x^{-\frac{1}{2}} + C \] Thus, the result is: \[ \int x^{-\frac{3}{2}} \, dx = -2 x^{-\frac{1}{2}} + C \] ### Step 2: Integrate \( \int \sin 60^\circ \, dx \) Since \( \sin 60^\circ = \frac{\sqrt{3}}{2} \), we can treat this as a constant: \[ \int \sin 60^\circ \, dx = \int \frac{\sqrt{3}}{2} \, dx \] This simplifies to: \[ \frac{\sqrt{3}}{2} \int dx = \frac{\sqrt{3}}{2} x + C \] Thus, the result is: \[ \int \sin 60^\circ \, dx = \frac{\sqrt{3}}{2} x + C \] ### Step 3: Integrate \( \int \frac{1}{10x} \, dx \) We can factor out the constant \( \frac{1}{10} \): \[ \int \frac{1}{10x} \, dx = \frac{1}{10} \int \frac{1}{x} \, dx \] The integral of \( \frac{1}{x} \) is \( \ln |x| \): \[ \int \frac{1}{10x} \, dx = \frac{1}{10} \ln |x| + C \] Thus, the result is: \[ \int \frac{1}{10x} \, dx = \frac{1}{10} \ln |x| + C \] ### Step 4: Integrate \( \int (2x^3 - x^2 + 1) \, dx \) We can integrate each term separately: \[ \int (2x^3 - x^2 + 1) \, dx = \int 2x^3 \, dx - \int x^2 \, dx + \int 1 \, dx \] Calculating each integral: 1. \( \int 2x^3 \, dx = 2 \cdot \frac{x^4}{4} = \frac{1}{2} x^4 \) 2. \( \int x^2 \, dx = \frac{x^3}{3} \) 3. \( \int 1 \, dx = x \) Combining these results: \[ \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \] Thus, the result is: \[ \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \] ### Final Results 1. \( \int x^{-\frac{3}{2}} \, dx = -2 x^{-\frac{1}{2}} + C \) 2. \( \int \sin 60^\circ \, dx = \frac{\sqrt{3}}{2} x + C \) 3. \( \int \frac{1}{10x} \, dx = \frac{1}{10} \ln |x| + C \) 4. \( \int (2x^3 - x^2 + 1) \, dx = \frac{1}{2} x^4 - \frac{1}{3} x^3 + x + C \)
Promotional Banner

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Graphs))|30 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|39 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Differentiation)|40 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

int(x^4-3)/(x^2+2x+1)dx

(i)int(x^(3)-1)/(x^(2))dx(ii)int(x^(2/3)+1)dx

"int(1)/(4x^(2)-3)*dx

Evaluate each of the following integrals: int x^(4)dx( ii) int x^(5/4)dx (iii) int(1)/(x^(5))dx( iv )int(1)/(x^(3)/2)dx

Integrate the following integral, I=int(4x+1)/(x^(2)+3x+2)dx

Integrate the Following Integral int (2x-3)/sqrt(2x^2-6x+1) dx

Evaluate each of the following integrals: intx^4dx (ii) intx^(5/4)dx int1/(x^5)dx (iv) int1/((x^3)/2)dx int3^xdx (vi) int1/(3sqrt(x^2))dx int3^2log3^xdx (viii) int(log)_xxdx

Integrate the following functions w.r.t. x , (i) int(ax+b)^(n)dx (ii)int(2^((1)/(x)))/(x^(2))dx (iii) int(2dx)/((e^(x)+e^(-x))^(2)) (iv) (1)/(x^(2)(x^(4)+1)^((3)/(4))dx (v) int((tan^(-1)x)^(3))/(1+x^(2))dx

Evaluate the following integrals: int(2-3x)(3+2x)(1-2x)dx

Integrate the following function (a) int_(o)^(2) 2t dt (b) int _(pi//6)^(pi//3) sin x dx (c) int _(4)^(10)(dx)/(x) (d) int _(o)^(pi) cos x dx (e) int _(1) ^(2)(2t -4) dt