Home
Class 12
PHYSICS
State whether the following relations ar...

State whether the following relations are true or false
(1)`vec(AB)=vec(BA)`
(2)`vec(AB)=-vec(BA)`
(3)`|vec(AB)|=|vec(BA)|`
(4)`|vec(AB)|=|-vec(AB)|`
(5)`hatj=hatk`
(6)`|hatj|=|hatk|`

Text Solution

Verified by Experts

The correct Answer is:
(i) False (ii) True (iii) True (iv) True (v) False (vi) True
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • RACE

    ALLEN|Exercise Basic Maths (Units, Dimensions & Measurements)|33 Videos
  • RACE

    ALLEN|Exercise Basic Maths (KINEMATICS)|59 Videos
  • RACE

    ALLEN|Exercise Basic Maths (Co-ordinate & Algebra)|39 Videos
  • NEWTONS LAWS OF MOTION

    ALLEN|Exercise EXERCISE-III|28 Videos
  • SIMPLE HARMONIC MOTION

    ALLEN|Exercise Example|1 Videos

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon, prove that vec(AC)+vec(AD)+vec(EA)+vec(FA)=3vec(AB)

In /_\ABC whch of the folloiwng is not true? vec(AB)+vec(BC)+vec(CA)=0 (A) vec(AB)+vec(BC)+vec(CA)=0 (B) vec(AB)+vec(BC)-vec(AC)=0 (C) vec(AB)+vec(BC)-vec(CA)=0 (D) vec(AB)-vec(CB)+vec(CA)=0

Knowledge Check

  • In a quadrilateral ABCD, vec(AB) + vec(DC) =

    A
    `vec(AB) + vec(CB)`
    B
    `vec(AC) + vec(BD)`
    C
    `vec(AC) + vec(DB)`
    D
    `vec(AD) - vec(CB)`
  • In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

    A
    `p^(2)`
    B
    `2p^(2)`
    C
    `(p^(2))/(2)`
    D
    p
  • In a triangle ABC, if taken in order, consider the following statements 1. vec(AB) + vec(BC) + vec(CA) = vec(0) 2 vec(AB) + vec(BC) - vec(CA) = vec(0) 3. vec(AB)- vec(BC) + vec(CA) = vec(0) 4. vec(BA)- vec(BC) + vec(CA) = vec(0) How many of the above statements are correct?

    A
    one
    B
    two
    C
    Three
    D
    Four
  • Similar Questions

    Explore conceptually related problems

    In Fig. ABCDEF is a ragular hexagon. Prove that vec(AB) +vec(AC) +vec(AD) +vec(AE) +vec(AF) = 6 vec(AO) .

    Prove that (vec(A) +2vec(B)) .(2vec(A) - 3vec(B)) = 2A^(2) +AB cos theta - 6B^(2) .

    Prove that (vec(A)+2vec(B)).(2vec(A)-3vec(B))=2A^(2)+AB cos theta-6B^(2) .

    ABCDE is a pentagon prove that vec(AB)+vec(BC)+vec(CD)+vec(DE)+vec(EA)=vec0

    If ABCDE is a pentagon, then vec(AB) + vec(AE) + vec(BC) + vec(DC) + vec(ED) + vec(AC) is equal to