Home
Class 11
MATHS
यदि G (x) = -sqrt(25-x^(2)) तब lim ( ...

यदि `G (x) = -sqrt(25-x^(2))`
तब ` lim _( x to 1 )(G(x)-G(1))/(x-1)= 1/sqrt(24)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If G(x) = -sqrt(25-x^2) then lim_(x to 1) (G(x)-G(1))/(x-1) = ?

If G(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (G(x)-G(1))/(x-1) =

If g(x) = -sqrt(25-x^(2)) the lim_(x rarr 1) (g(x)-g(1))/(x-1) =

If G(x)=-sqrt(25-x^(2)) , then lim_(xrarr1) (G(x)-G(1))/(x-1)=?

If G(x ) = - sqrt( 25-x^2) lim_( x - > 1 ) (G(x) - G(1 ) )/( x - 1 ) = 1/sqrt(A) then find A

If G(x)=-sqrt(25-x^(2)) ,find the value of lim(x rarr1)(G(x)-G(1))/(x-1)

Given that lim_(x to oo ) ((2+x^(2))/(1+x)-Ax-B)=3 If G(x)=sqrt(25-x^(2)) then what is lim_(xto1) (G(x)-G(1))/(x-1) equal to?

If G(x)=-sqrt(25-x^(2)), then lim_(x rarr1)(G(x)-G(1))/(x-1)is (a) (1)/(24) (b) (1)/(5)(c)-sqrt(24) (d) none of these