Home
Class 12
MATHS
tan^(-1)x-tan^(-1)y=tan^(-1)A हो, तो A=...

`tan^(-1)x-tan^(-1)y=tan^(-1)A` हो, तो `A=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

The solution of the differential equation (1+x^2)(dy)/(dx)+1+y^2=0, is a) tan^(-1)x-tan^(-1)y=tan^(-1)C b) tan^(-1)y-tan^(-1)x=tan^(-1)C c) tan^(-1)y+-tan^(-1)x=tan^(\ )C d) tan^(-1)y+tan^(-1)x=tan^(-1)C

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P the (2y)/(1-y^(2))=

If tan^(-1)x,tan^(-1)y,tan^(-1)z are in A.P then (2y)/(1-y^(2))=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for

tan^(-1)x-tan^(-1)y=tan^(-1)((x-y)/(1+xy)) holds good for