Home
Class 12
MATHS
Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21...

Let `f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7`
`265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = 3x^(10) - 7x^(8) + 5x^(6) - 21x^(3) + 3x^(2) - 7 . Then lim_(h rarr 0) (f(1-h)-f(1))/(h^(3) + 3h) equals :

Let f(x)=3x^(10)-7x^8+5x^6-21x^3+3x^2-7 . Then lim_(hto0)(f(1-h)-f(1))/(h^3+3h)

f(x)=3x^(10)7x^(8)+5x^(6)-21x^(3)+3x^(2)7, then is the value of lim_(h rarr0)(f(1-h)-f(1))/(h^(3)+3h) is

If f(x) = 2x^(4) + 5x^(3) -7x^(2) - 4x + 3 then f(x -1) =

Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 , then the value of lim_(h->0) (f(1-h)-f(1))/(h^3+3h)

Let f(x)=3x^(10)-7x+5x-21x^(3)+3x^(2)-7 , then the value of underset(h to 0)(Lt)(f(1-h)f(1))/(h^(3)+3h) is

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)