Home
Class 12
MATHS
If A=[(ab,b^(2)),(-a^(2),-ab)] then A is...

If `A=[(ab,b^(2)),(-a^(2),-ab)]` then A is

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(ab,b^(2)),(-a^(2),-ab)] then A^(2)=

If A=[(ab,b^2),(-a^2,-ab)] then matrix A is (A) scalar (B) involuntary (C) idemponent (D) nilpotent

If A=[{:(ab,b^(2)),(-a^(2),-ab):}], show that A^(2)=O.

If A=[[-ab,b^(2)-a^(2),-ab]] then show that A^(2)=0

If A= [[ab,b^2],[-a^2, -ab]] then A^(2)=

If A=[(ab ,b^2) ,(-a^2 ,-ab)] , show that A^2=O .

If A=[[ab,b^(2)-a^(2)-ab]] and A^(n)=0, then the minimum value of 'n' is

" If "A=[[ab,b^(2)],[-a^(2),-ab]]" and "B=I+A" ,then "|B|^(100)" ,where "I" is identity matrix of order "2" ,is "