Home
Class 12
MATHS
inte^x((x^4+x^2+1)/(x^2+x+1)) dx=...

`inte^x((x^4+x^2+1)/(x^2+x+1)) dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

int (x^(4) + x^(2) +1)/(x^(2) + 1) dx =

int (4x^(2) +x+1)/(x^(3) -1) dx=?

If the integral int(x^(4)+x^(2)+1)/(x^(2)x-x+1)dx=f(x)+C, (where C is the constant of integration and x in R ), then the minimum value of f'(x) is

(i) int((x^(2) - 1)/(x^(2) + 1))dx , (ii) int ((x^(6)- 1)/(x^(2) + 1))dx (iii) int ((x^(4))/(1+x^(2)))dx , (iv) int((x^(2))/(1+x^(2)))dx

Find int( x^4 )/((x-1)(x^2+1))dx

int(4x)/(2x^2+x-1)dx=

int(x)/(2x^4-2x^2-1)dx=

int(x^(4)dx)/((x-1)(x^(2)+1))