Home
Class 12
MATHS
intx{f(x^2)g''(x^2)-f''(x^2)g(x^2)}dx...

`intx{f(x^2)g''(x^2)-f''(x^2)g(x^2)}dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int x{f(x)^(2) g''(x^(2))-f''(x^(2)) g(x^(2))} dx is equal to

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

The value of int_1^2 {f(g(x))}^(-1)f'(g(x))g'(x) dx , where g(1)=g(2), is equal to

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

If g(1)=g(2), then int_(1)^(2)[f{g(x)}]^(-1)f'{g(x)}g'(x)dx is equal to

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is

If f(x) and g(x) are continuous functions, then int_(In lamda)^(In (1//lamda))(f(x^(2)//4)[f(x)-f(-x)])/(g(x^(2)//4)[g(x)+g(-x)])dx is