Home
Class 11
PHYSICS
The position of the particle is given by...

The position of the particle is given by `vec(r )=(vec(i)+2vec(j)-vec(k))` momentum `vec(P)= (3vec(i)+4vec(j)-2vec(k))`. The angular momentum is perpendicular to

Promotional Banner

Similar Questions

Explore conceptually related problems

The position of a particle is given by vec r = hat i + 2hat j - hat k and its momentum is vec p = 3 hat i + 4 hat j - 2 hat k . The angular momentum is perpendicular to

Find the angle between the planes vec(r).(2vec(i)-vec(j)+2vec(k))=3 an vec(r).(3vec(i)+6vec(j)+vec(k))=4 .

If vec(a).vec(i)=4 , then (vec(a) . vec(j))xx (2vec(j)-3vec(k)) =

Find the angle between the vectors : vec(a)=3vec(i)-2vec(j)+vec(k) and vec(b)=vec(i)-2vec(j)-3vec(k)

If vec(a)= 2vec(i)-vec(j) +vec(k), vec(b)= 3vec(i) + 4vec(j) -vec(k) , then |vec(a) xx vec(b)|=

Find the angle between the vectors vec(i) + 2vec(j) + 3vec(k) and 3vec(i) - vec(j) + 2vec(k) .

(2 vec(i) + 4vec(j) + 2vec(k)) xx (2vec(i) -p vec(j) + 5vec(k))=16 vec(i) -6vec(j) + 2p vec(k) then p=

Find the value of: (vec j xxvec k) * (3vec i + 2vec j-vec k)