Home
Class 6
MATHS
" (b) Show that ":int(2x-1)/(2x+3)dx=x-l...

" (b) Show that ":int(2x-1)/(2x+3)dx=x-log|(2x+3)^(2)|+c

Promotional Banner

Similar Questions

Explore conceptually related problems

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C

verify that int(2x-1)/(2x+3)dx = x - log|(2x+3)^(2)|+C

Verify that int (2x-1)/(2x+3)dx=x-log(2x+3)^2+C

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

Verify that int(2x+3)/(x^(2)+3x)dx = log|x^(2)+3x|+c

Verify that int (2x+3)/(x^2+3x)dx=log|x^2+3x|+C .

int(log x)^(3/2)/(x)dx

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

(i) int(dx)/(sqrt(a^(2)-x^(2)))=(1)/(a)sin^(-1)((x)/(a))+c (ii) int(dx)/(a^(2)+x^(2))=tan^(-1)((x)/(a))+c (iii) int(x+1)/(x^(2)+2x+1)dx=(1)/(2)log|(x^(2)+2x+1)| (iv) int(dx)/(x(x-1))dx=log|(x-1)/(x)|+c State which pair of the statement given above is true.