Home
Class 12
MATHS
" 2."(x^(2))/(a^(2))+(y^(2))/(b^(2))=1...

" 2."(x^(2))/(a^(2))+(y^(2))/(b^(2))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Eccentricity of ellipse (x^(2))/(169) + (y^(2))/(25) = 1 and (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 then (a)/(b) = ……..

A : The angle between the asymptotes x^(2) -y^(2) =2 "is " pi//2 R: The angle between the asymptotes of the hyperbola (x^(2))/( a^(2)) -(y^(2))/(b^(2)) =1 "is" 2 Tan^(-1) (b)/(a)

if two curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1&(x^(2))/(a)^(2)+(y^(2))/(b)^(2)=1 one another at right angle then

The line x=at^(2) meets the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 in the real points if

Area of the quadrilateral formed with the foci of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and (x^(2))/(a^(2))-(y^(2))/(b^(2))=-1( a) 4(a^(2)+b^(2))( b) 2(a^(2)+b^(2))( c) (a^(2)+b^(2))(d)(1)/(2)(a^(2)+b^(2))

If (x)/(a)+(y)/(b)=sqrt(2) touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then its eccentric angle theta is equal to

(x)/(a)+(y)/(b)=sqrt(2) touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then the eccentric angle of P is

Find the condition on a and b for which two distinct chords of the hyperbola (x^(2))/(2a^(2))-(y^(2))/(2b^(2))=1 passing through (a,b) are bisected by the line x+y=b .

If the tangents drawn from a point on the hyperbola x^(2)-y^(2)=a^(2)-b^(2) to ellipse (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 make angle alpha and beta with the transverse axis of the hyperbola, then