Home
Class 12
MATHS
[[1,1,1],[1,-1-omega^(2),omega^(2)],[1,o...

[[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]|=3 omega(omega-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega=-(1)/(2)+i (sqrt(3))/(2) , then the value of |[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^(2),omega^(4)]| is

Let , /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega,omega^4]| where omega ne 1 is a complex number such that omega^3 = 1 , then /_\ =

Let omega=-(1)/(2)+i(sqrt(3))/(2), then value of the determinant [[1,1,11,-1,-omega^(2)omega^(2),omega^(2),omega]] is (a) 3 omega(b)3 omega(omega-1)3 omega^(2)(d)3 omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2 . Then the value of the determinant |(1,1,1),(1,-1-omega^2,omega^2),(1,omega^2,omega^4)| is (A) 3omega (B) 3omega(omega-1) (C) 3omega^2 (D) 3omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1-omega^2,-omega^2],[1, omega^2,omega^4]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

Let omega=-(1)/(2)+i(sqrt(3))/(2). Then the value of the determinant det[[1,1,11,1,omega^(2)1,omega^(2),omega^(4)]]3 omega(omega-1)(C)3 omega^(2)(D)3 omega(1-omega)

Let omega=-1/2+i(sqrt(3))/2, then value of the determinant [[1, 1, 1],[ 1,-1,-omega^2],[omega^2, omega^2,omega]] is (a) 3omega (b) 3omega(omega-1) (c) 3omega^2 (d) 3omega(1-omega)

Given omega = -frac{1}{2}+frac{isqrt(3)}{2} , then the value of /_\=|[1,1,1],[1,-1-omega^(2),omega^(2)],[1,omega^2,omega^4]|

{[(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega)] + [(omega,omega^(2),1),(omega^(2),1,omega),(omega,omega^(2),1)]} [(1),(omega),(omega^(2))]