Home
Class 12
MATHS
If f(x)=(e^(1/x)-1)/(1+e^(1/x)) when x!=...

If `f(x)=(e^(1/x)-1)/(1+e^(1/x))` when `x!=0` `=0,` when `x=0` show that `f(x)` is discontinuous at `x=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

Show that the function f(x) given by f(x)={(e^(1/x)-1)/(e^(1/x)+1), when x!=00,quad when x=0 is discontinuous at x=0

Show that the function f(x)={{:((e^(1//x)-1)/(e^(1//x)+1)", when "x!=0),(0", when "x=0):} is discontinuous at x=0 .

Let f(x)={(1-cos x)/(x^(2)), when x!=01,quad when x=0. Show that f(x) is discontinuous at x=0 .

Let f(x)={(1-cosx)/(x^2),\ \ \ w h e n\ x!=0 ; 1,\ \ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .

Let f(x)=(1-cosx)/(x^2),\ \ \ w h e n\ x!=0,\ f(x)=1,\ \ \ w h e n\ x=0 . Show that f(x) is discontinuous at x=0 .

Given , f(x)={{:((1-cos3x)/(x^(2)),"when " xne0),(1,"when "x=0):} Prove that f (x) is discontinuous at x = 0 .

Show the function, f(x)={((e^(1//x)-1)/(e^(1//x)+1), "when x" le 0),(0, "when x"=0):} has non-removable discontinuity at x=0

Is f(x)=(1+x)^((1)/(x)), when x!=0=e, when x=0 continuous at x=0?

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"