Home
Class 11
MATHS
" If "z=re^(i theta)," then prove that "...

" If "z=re^(i theta)," then prove that "le^(iz)=e^(-r sin theta)

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z= re^(i theta)" then "|e^(iz)|=

If z = re^(itheta) , then abs(e^(iz)) =

If z= re^(i theta ) , " then " |e^(iz) | is equal to a)1 b) e^(2r) sin theta c) e^( r sin theta) d) e^(-r sin theta)

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

If z = (3)/( 2 + cos theta + I sin theta) , then prove that z lies on the circle.

If z=re^(itheta) then |e^(iz)| is equal to:

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).