Home
Class 12
MATHS
14. (i) If x=e", prove that dy *- y dx *...

14. (i) If x=e", prove that dy *- y dx * log *

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If x=e^(x/y), prove that (dy)/(dx)=(x-y)/(x log x)

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If x = e^(x/y) , prove that (dy)/(dx) = (x-y)/(x log x) .

If x^y = e^(x-y) , prove that dy/dx = (logx)/({log(xe)}^2)

If x= e^((x)/(y)) , then prove that (dy)/(dx)= (x-y)/(x.log x)