Home
Class 11
MATHS
Show that e^(2m itheta)((icottheta+1)/(i...

Show that `e^(2m itheta)((icottheta+1)/(i cottheta-1))^m=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that e^(2mi theta)((i cot theta+1)/(i cot theta-1))^(m)=1

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+secthetacos e ctheta

Prove that: (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

Show that, ((1-tantheta)/(1-cottheta))^2=(1+tan^2theta)/(1+cot^2theta).

z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

let z1, z2,z3 be vertices of triangle ABC in an anticlockwise order and angle ACB = theta then z_2-z_3 = (CB)/(CA)(z_1-z3) e^itheta . let p point on a circle with op diameter 2 points Q & R taken on a circle such that angle POQ & QOR= theta if O be origin and PQR are complex no. z1, z2, z3 respectively then z_2/z_1 = (A) e^(itheta) cos theta (B) e^(itheta) cos 2theta (C) e^(-itheta) cos theta (D) e^(2itheta) cos 2theta

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

i) Prove that: (1+tan^(2)A)/(1-tan^(2)A) xx (2 cos^(2) A-1)=1 ii) Prove that: (tantheta)/(1+cottheta)+(cottheta)/(1+tantheta) = "cosec"theta.sectheta-1

Prove: (tantheta)/(1- cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta

z_1/z_2= (A) cos2theta e^(2itheta0 (B) sec2thetae^-2itheta) (C) cos^2thetae^(2itheta) (D) sec^2theta e^(-2itheta0