Home
Class 12
MATHS
The function f(x)""=""t a n^(-1)(sinx""+...

The function `f(x)""=""t a n^(-1)(sinx""+""cosx)` is an increasing function in (1) `(pi/4,pi/2)` (2) `(-pi/2,pi/4)` (3) `(0,pi/2)` (4) `(-pi/2,pi/2)`

A

`((pi)/(4), (pi)/(2))`

B

`(-(pi)/(2), (pi)/(4))`

C

`(0, (pi)/(2))`

D

`(-(pi)/(2), (pi)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    DISHA PUBLICATION|Exercise EXERCISE - 1|65 Videos
  • APPLICATION OF INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT BUILDER|30 Videos

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (1)((pi)/(4),(pi)/(2))(2)(-(pi)/(2),(pi)/(4))(3)(0,(pi)/(2))(4)(-(pi)/(2),(pi)/(2))^(((pi)/(4)),(pi)/(2))^(((pi)/(4)))(2)

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

Prove the following f(x)=tan^(-1)(sinx+cosx) is strictly decreasing function on ((pi)/(4),(pi)/(2)) .

Show that the function f(x)=cot^(-1)(sin x+cos x) is decreasing on (0,pi/4) and increasing on (pi/4,pi/2)

Show that f(x)=cos(2x+pi/4) is an increasing function on (3 pi/8,7 pi/8)

Show that f(x)=cos(2x+(pi)/(4)) is an increasing function on (3 pi/8,7 pi/8)

The largest interval lying in (-pi/2,pi/2) for which the function [f(x)=4^-x^2+cos^(-1)(x/2-1)+log(cosx)] is defined, is (1) [0,pi] (2) (-pi/2,pi/2) (3) [-pi/4,pi/2) (4) [0,pi/2)

If cos(sinx)=0, then x lies in (a) (pi/4,pi/2)uu(pi/2,\ pi) (b) (-pi/4,\ 0) (c) (pi,(3pi)/2) (d) null set

The range of function f(x)=cot^(-1)x+sec^(-1)x+ cosec^(-1)x is (A) [(pi)/(2), pi)uu(pi, (3 pi)/(2)] (B) ((pi)/(2), (3 pi)/(4)] uu [(5 pi)/(4), (3 pi)/(2)) (C) ((pi)/(2), pi)uu(pi ,(3 pi)/(2)) (D) ((pi)/(2), (3 pi)/(2))

f:R rarr R , f(x)=tan^(-1)(2^x) + k is an odd function, then k= (A) -pi/4 (B) (pi)/(4) (C) -(pi)/(2) (D) (pi)/(2)

DISHA PUBLICATION-APPLICATION OF DERIVATIVES -EXERCISE - 2
  1. For the curve by^2=(x+a)^3 the square of subtangent is proportional t...

    Text Solution

    |

  2. Find the point of intersection of the tangents drawn to the curve x...

    Text Solution

    |

  3. The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing fu...

    Text Solution

    |

  4. The function f(x)=2log(x-2)-x^2+4x+1 increases on the interval (a) (1,...

    Text Solution

    |

  5. Find the intervals in which the function f given by f(x)=(4sinx-2x-xc...

    Text Solution

    |

  6. Let f(x)=x^3+ax^2+bx+5sin^2x be an increasing function in the set of r...

    Text Solution

    |

  7. The function f(x) = 3 cos^(4)x + 10 cos^(3) x + 6 cos^(2)x - 3, (0 le ...

    Text Solution

    |

  8. f(x) = 2x^(2) – log | x | (x != 0) is monotonic increasing in the int...

    Text Solution

    |

  9. The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

    Text Solution

    |

  10. The number of solutions of the equation x^3 +2 x^2 +5 x + 2 cos x = 0 ...

    Text Solution

    |

  11. Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

    Text Solution

    |

  12. If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) v=sqrt(c) -sqrt(c-1),(...

    Text Solution

    |

  13. f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x)=

    Text Solution

    |

  14. Given P(x)""=""x^4+""a x^3+""c x""+""d such that x""=""0 is the only ...

    Text Solution

    |

  15. L L ' is the latus sectum of the parabola y^2=4a xa n dP P ' is a doub...

    Text Solution

    |

  16. Let y=x^2 e^(-x) then the interval in which y increases with respect t...

    Text Solution

    |

  17. The function log(1+x) - (2x)/(x+2) is increasing in the interval:

    Text Solution

    |

  18. Prove that the function f(x)=tanx-4x is strictly decreasing on (-pi//3...

    Text Solution

    |

  19. Which one of the following statements is correct in respect of the cur...

    Text Solution

    |

  20. Tangent is drawn to ellipse (x^2)/(27)+y^2=1 at (3sqrt(3)costheta,sint...

    Text Solution

    |