Home
Class 12
MATHS
The function f(x) = 3 cos^(4)x + 10 cos^...

The function `f(x) = 3 cos^(4)x + 10 cos^(3) x + 6 cos^(2)x - 3, (0 le x le pi)` is -

A

Increasing in `((pi)/(2), (2pi)/(3))`

B

Increasing in `(0, (pi)/(2)) uu ((2pi)/(3), pi)`

C

Decreasing in `((pi)/(2), (2pi)/(3))`

D

All of the above

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) = 3 \cos^4 x + 10 \cos^3 x + 6 \cos^2 x - 3 \) is monotonically increasing or decreasing in the interval \( [0, \pi] \), we need to follow these steps: ### Step 1: Find the derivative \( f'(x) \) To analyze the monotonicity of the function, we first need to find its derivative. \[ f'(x) = \frac{d}{dx}(3 \cos^4 x + 10 \cos^3 x + 6 \cos^2 x - 3) \] Using the chain rule and the power rule, we differentiate each term: \[ f'(x) = 3 \cdot 4 \cos^3 x \cdot (-\sin x) + 10 \cdot 3 \cos^2 x \cdot (-\sin x) + 6 \cdot 2 \cos x \cdot (-\sin x) \] This simplifies to: \[ f'(x) = -12 \cos^3 x \sin x - 30 \cos^2 x \sin x - 12 \cos x \sin x \] Factoring out \(-6 \sin x\): \[ f'(x) = -6 \sin x (2 \cos^3 x + 5 \cos^2 x + 2 \cos x) \] ### Step 2: Set the derivative equal to zero To find the critical points, we set \( f'(x) = 0 \): \[ -6 \sin x (2 \cos^3 x + 5 \cos^2 x + 2 \cos x) = 0 \] This gives us two cases to consider: 1. \( \sin x = 0 \) 2. \( 2 \cos^3 x + 5 \cos^2 x + 2 \cos x = 0 \) ### Step 3: Solve \( \sin x = 0 \) In the interval \( [0, \pi] \): \[ \sin x = 0 \implies x = 0, \pi \] ### Step 4: Solve \( 2 \cos^3 x + 5 \cos^2 x + 2 \cos x = 0 \) Factoring out \( \cos x \): \[ \cos x (2 \cos^2 x + 5 \cos x + 2) = 0 \] This gives us: 1. \( \cos x = 0 \implies x = \frac{\pi}{2} \) 2. For \( 2 \cos^2 x + 5 \cos x + 2 = 0 \), we can use the quadratic formula: Let \( u = \cos x \): \[ 2u^2 + 5u + 2 = 0 \] Using the quadratic formula \( u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ u = \frac{-5 \pm \sqrt{25 - 16}}{4} = \frac{-5 \pm 3}{4} \] This gives us: \[ u = -\frac{1}{2} \quad \text{or} \quad u = -2 \quad (\text{not possible since } -2 < -1) \] Thus, we have \( \cos x = -\frac{1}{2} \): \[ x = \frac{2\pi}{3} \] ### Step 5: Analyze the intervals The critical points are \( x = 0, \frac{\pi}{2}, \frac{2\pi}{3}, \pi \). We will test the sign of \( f'(x) \) in the intervals: 1. \( (0, \frac{\pi}{2}) \) 2. \( (\frac{\pi}{2}, \frac{2\pi}{3}) \) 3. \( (\frac{2\pi}{3}, \pi) \) **Interval Testing:** - For \( x \in (0, \frac{\pi}{2}) \): Choose \( x = \frac{\pi}{4} \) - \( f'(\frac{\pi}{4}) > 0 \) (function is increasing) - For \( x \in (\frac{\pi}{2}, \frac{2\pi}{3}) \): Choose \( x = \frac{3\pi}{8} \) - \( f'(\frac{3\pi}{8}) < 0 \) (function is decreasing) - For \( x \in (\frac{2\pi}{3}, \pi) \): Choose \( x = \frac{5\pi}{6} \) - \( f'(\frac{5\pi}{6}) < 0 \) (function is decreasing) ### Conclusion The function \( f(x) \) is: - Increasing on the interval \( [0, \frac{\pi}{2}) \) - Decreasing on the intervals \( (\frac{\pi}{2}, \frac{2\pi}{3}) \) and \( (\frac{2\pi}{3}, \pi] \)
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    DISHA PUBLICATION|Exercise EXERCISE - 1|65 Videos
  • APPLICATION OF INTEGRALS

    DISHA PUBLICATION|Exercise EXERCISE-2: CONCEPT BUILDER|30 Videos

Similar Questions

Explore conceptually related problems

Separate the intervals of monotonocity for the function f(x)=3cos^(4)x+10cos^(3)x+6cos^(2)x-3,x in[0,pi]

The function f(x)=cos x, 0 le x le pi is

Let f be a function defined on [-(pi)/(2), (pi)/(2)] by f(x) = 3 cos^(4) x-6 cos^(3) x - 6 cos^(2) x-3 . Then the range of f(x) is

The number of solution of sin^(4)x-cos^(2) x sin x+2 sin^(2)x+sin x=0 in 0 le x le 3 pi is

The interval in which f(x)=3cos^(4)x+10cos^(3)x+6cos^(2)x-3 increases or decreases in (0,pi)

DISHA PUBLICATION-APPLICATION OF DERIVATIVES -EXERCISE - 2
  1. Find the intervals in which the function f given by f(x)=(4sinx-2x-xc...

    Text Solution

    |

  2. Let f(x)=x^3+ax^2+bx+5sin^2x be an increasing function in the set of r...

    Text Solution

    |

  3. The function f(x) = 3 cos^(4)x + 10 cos^(3) x + 6 cos^(2)x - 3, (0 le ...

    Text Solution

    |

  4. f(x) = 2x^(2) – log | x | (x != 0) is monotonic increasing in the int...

    Text Solution

    |

  5. The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

    Text Solution

    |

  6. The number of solutions of the equation x^3 +2 x^2 +5 x + 2 cos x = 0 ...

    Text Solution

    |

  7. Let g(x)=2f(x/2)+f(1-x) and f^(primeprime)(x)<0 in 0<=x<=1 then g(x)

    Text Solution

    |

  8. If f(x)=x+sinx ,g(x)=e^(-x),u=sqrt(c+1)-sqrt(c) v=sqrt(c) -sqrt(c-1),(...

    Text Solution

    |

  9. f(x)=(sin^(2)x)e^(-2sin^(2)x)*max f(x)-min f(x)=

    Text Solution

    |

  10. Given P(x)""=""x^4+""a x^3+""c x""+""d such that x""=""0 is the only ...

    Text Solution

    |

  11. L L ' is the latus sectum of the parabola y^2=4a xa n dP P ' is a doub...

    Text Solution

    |

  12. Let y=x^2 e^(-x) then the interval in which y increases with respect t...

    Text Solution

    |

  13. The function log(1+x) - (2x)/(x+2) is increasing in the interval:

    Text Solution

    |

  14. Prove that the function f(x)=tanx-4x is strictly decreasing on (-pi//3...

    Text Solution

    |

  15. Which one of the following statements is correct in respect of the cur...

    Text Solution

    |

  16. Tangent is drawn to ellipse (x^2)/(27)+y^2=1 at (3sqrt(3)costheta,sint...

    Text Solution

    |

  17. Let domain and range of f(x) and g(x) are respectively (0,oo). If f(x)...

    Text Solution

    |

  18. The volume V and depth x of water in a vessel are connected by the rel...

    Text Solution

    |

  19. Find the maximum value and the minimum value and the minimum value of ...

    Text Solution

    |

  20. Find the points of inflection for f(x)=sinx f(x)=3x^4-4x^3 f(x)=x...

    Text Solution

    |