Home
Class 12
MATHS
" Prove that "tan^(-1){(sqrt(1+cos x)+sq...

" Prove that "tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2),0

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (i)tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=(pi)/(4)+(x)/(2)

Prove that tan^(-1) {(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cos x)-sqrt(1-cosx))}=pi/4+x/2

Prove that: tan^(^^)(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}=pi/4-x/2, if pi

Prove that tan^(-1)(sqrt((1-cos x)/(1+cos x)))=(x)/(2)

If x in (pi, 2pi) , prove that ((sqrt(1+cosx))+(sqrt(1-cos x)))/((sqrt(1+cos x)) -sqrt(1-cos x)) = cot(pi/4 +x/2)

tan ^(-1)(sqrt((1-cos 3 x)/(1+cos x)))

tan ^(-1) ""{(sqrt(1+cos x)+sqrt(1-cos x)}/{sqrt(1+cosx)-sqrt(1-cos x)}}=(pi)/(4)+(x)/(2) , 0 lt x lt (pi)/(2)

If pi

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

(v) tan^(-1)sqrt((1+cos x)/(1-cos x))