Home
Class 12
MATHS
{sin^(-1)(3x-4x^(3))dx[-(1)/(2)leqslant ...

{sin^(-1)(3x-4x^(3))dx[-(1)/(2)leqslant x leqslant(1)/(2)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Integrate : int sin^(-1)(3x-4x^(3))dx[-(1)/(2)lexle(1)/(2)]

Prove that: 3sin^(-1)x=sin^(-1)(3x-4x^(3)),x in[-(1)/(2),(1)/(2)]

prove that 3sin^(-1)x=sin^(-1)(3x-4x^(3)),x in[(-1)/(2),(1)/(2)] .

Differentiate tan^(-1)((x-1)/(x+1)) with respect to sin^(-1)(3x-4x^(3)), if -(1)/(2)

Statement I If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=(3)/(sqrt(1-x^(2))) only when (-1)/(2)lexlt(1)/(2)/. Statement II sin^(-1)(3x-4x^(3)) ={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}

Statement I If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=(3)/(sqrt(1-x^(2))) only when (-1)/(2)lexlt(1)/(2)/. Statement II sin^(-1)(3x-4x^(3)) ={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}

Statement I If y=sin^(-1)(3x-4x^(3)), then (dy)/(dx)=(3)/(sqrt(1-x^(2))) only when (-1)/(2)lexlt(1)/(2)/. Statement II sin^(-1)(3x-4x^(3)) ={(-pi-3sin^(-1)x,,-1lexle-(1)/(2),),(3sin^(-1)x,,-(1)/(2)lexle(1)/(2),),(pi-3sin^(-1)x,,(1)/(2)lexle1,):}

3sin^(-1)x=sin(3x-4x^(3)),x in[-(1)/(2),(1)/(2)]