Home
Class 12
MATHS
[Q*24" If "f(x)=sum(n=0)^(oo)(x^(n))/(n!...

[Q*24" If "f(x)=sum_(n=0)^(oo)(x^(n))/(n!)(log a)^(n)," then at "x=0],[f(x)=?]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sum_(n=0)^oo x^n/(n!)(loga)^n , then at x = 0, f(x) (a) has no limit (b) is discontinuous (c) is continuous but not differentiable (d) is differentiable

If S=sum_(n=0)^(oo)((log x)^(2n))/((2n)!) then S equals :

sum_(n=0)^(oo)((log_(e)x)^(n))/(n!) is equal to

sum_(n=0)^( oo) (-1)^(n) x^( n+1)=

sum_ (n = 0) ^ (oo) (- 1) ^ (n) x ^ (n + 1) =

Given x in(-1,0)uu(0,1) and f(x)=sum_(n=0)^(oo)x^(n)(-1)^((n(n+1))/(2)) The function f(x) is equivalent to a rational function

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is

If f(x)=sum_(n=0)a_(n)|x|^(n), where a_(i) are real constants,then f(x) is