Home
Class 12
MATHS
" iii) "x=log t+sin t,y=e^(t)+cos t...

" iii) "x=log t+sin t,y=e^(t)+cos t

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx : x = log t+ sin t, y = e^t +cos t

x=sin t, y= cos 2t.

Equations of the tangent and normal to the curve x=e^(t) sin t, y=e^(t) cos t at the point t=0 on it are respectively

If x = e ^(t ) sin t, y = e ^(t) cos t, then (d ^(2) y )/(dx ^(2)) at t = pi is

x = sin t, y = cos 2 t .

x = "sin" t, y = "cos" 2t

x = "sin" t, y = "cos" 2t

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to